I wrote a (very long) blog post about those viral math problems and am looking for feedback, especially from people who are not convinced that the problem is ambiguous.
It’s about a 30min read so thank you in advance if you really take the time to read it, but I think it’s worth it if you joined such discussions in the past, but I’m probably biased because I wrote it :)
If you are so sure that you are right and already “know it all”, why bother and even read this? There is no comment section to argue.
I beg to differ. You utter fool! You created a comment section yourself on lemmy and you are clearly wrong about everything!
You take the mean of 1 and 9 which is 4.5!
/j
🤣 I wasn’t even sure if I should post it on lemmy. I mainly wrote it so I can post it under other peoples posts that actually are intended to artificially create drama to hopefully show enough people what the actual problems are with those puzzles.
But I probably am a fool and this is not going anywhere because most people won’t read a 30min article about those math problems :-)
Actually the correct answer is clearly 0.2609 if you follow the order of operations correctly:
6/2(1+2)
= 6/23
= 0.26Nah man, distribute the 2.
6/2(1+2)
= 6/2+4
= 3+4
= 7This is like 4st grayed maff.
🤣 I’m not sure if you read the post but I also wrote about that (the paragraph right before “What about the real world?”)
I did read the post (well done btw), but I guess I must have missed that. And here I thought I was a comedic genius
@relevants you truly are the smartest of all men
I did (skimmed it, at least) and I liked it. 🙃
Right, because 5 rounds down to 4.5
@Prunebutt meant 4.5! and not 4.5. Because it’s not an integer we have to use the gamma function, the extension of the factorial function to get the actual mean between 1 and 9 => 4.5! = 52.3428 which looks about right 🤣
Not sure if sarcastic and woosh, or adding to the joke ಠ_ಠ
The mean of 1 and 9 is 5
woosh
I think you got hit hard by Poe’s Law here. Except it’s more like people couldn’t tell if you were jokingly or genuinely getting your math wrong… Even after you explained you were joking lol
I thought the “/j” tone-tag was enough ;_;
jarcasm?
If one doesn’t realize you’re op, the entire thing can be interpreted very differently.
Then “Not sure if sarcastic and woosh, or adding to the joke ಠ_ಠ” could be interpreted as something like “I’m not sure if you are adding to the joke and I’m not understanding it”.
Stop it Patrick, you’re scaring them!
…Because 4 rounds up to 4.5
The answer realistically is determined by where you place implicit multiplication (or “multiplication by juxtaposition”) in the order of operations.
Some place it above explicit multiplication and division, meaning it gets done before the division giving you an answer of 1
But if you place it as equal to it’s explicit counterparts, then you’d sweep left to right giving you an answer of 9
Since those are both valid interpretations of the order of operations dependent on what field you’re in, you’re always going to end up with disagreements on questions like these…
But in reality nobody would write an equation like this, and even if they did, there would usually be some kind of context (I.e. units) to guide you as to what the answer should be.
Edit: Just skimmed that article, and it looks like I did remember the last explanation I heard about these correctly. Yay me!
Ackshually, the answer is 4
6÷2*(1+2)
6÷(1+2)*2
6÷(3)*2
2*2
4
You’re welcome
Typo in article:
If you are however willing to except the possibility that you are wrong.
Except should be ‘accept’.
Not trying to be annoying, but I know people will often find that as a reason to disregard academic arguments.
Great write up! The answer is use parentheses or fractions and stop wasting everyone’s time 😅
That’s actually a great way of putting it 🤣
No it isn’t dotnet.social/@SmartmanApps/110819283738912144
What if the real answer is the friends we made along the way?
I tried explaining this to people on facebook in 2010 or so.
“You must be fun at parties!”
Bitch, i dont want to attend your lame ass party where people think they know how math works.
I love that the calculators showing different answers are both from the same manufacturer XD
In the blog post there are even more. Texas Instruments, HP and Canon also have calculators, and some of them show 9 and some 1.
My TI-84 Plus is my holy oracle, I will go with whatever it says.
And then get distracted and play some Doom.
What’s especially wild to me is that even the position of “it’s ambiguous” gets almost as much pushback as trying to argue that one of them is universally correct.
Last time this came up it was my position that it was ambiguous and needed clarification and had someone accuse me of taking a prescriptive stance and imposing rules contrary to how things were actually being done. How asking a person what they mean or seeking clarification could possibly be prescriptive is beyond me.
Bonus points, the guy telling me I was being prescriptive was arguing vehemently that implicit multiplication having precedence was correct and to do otherwise was wrong, full stop.
The real lesson here is that clear, unambiguous communication is key.
And just what do you mean by that?
/s
It’s hilarious seeing all the genius commenters who didn’t read the linked article and are repeating all the exact answers and arguments that the article rebuts :)
Just write it better.
6/(2(1+2))
Or
(6/2)(1+2)
That’s how it works in the real world when you’re using real numbers to calculate actual things anyways.
But how would that go viral?
Just write it better.
6/(2(1+2))
If you really wanted extra brackets it’d be 6/(2)(1+2). Of course, since there’s only 1 term in the first brackets they’re redundant, hence 6/2(1+2) is the fully simplified form, and is the way it’s written in Maths textbooks.
Meanwhile programmers will be like, fools, clearly
2(n)
is a function 😏I don’t know a single language that lets you use a name starting with a number for anything off the top of my head
Probably Haskell.
I always hate any viral math post for the simple reason that it gives me PTSD flashbacks to my Real Analysis classes.
The blog post is fine, but could definitely be condensed quite a bit across the board and still effectively make the same points would be my only critique.
At it core Mathematics is the language and practices used in order to communicate numbers to one another and it’s always nice to have someone reasonably argue that any ambiguity of communication means that you’re not communicating effectively.
The blog post is fine
Except that it’s wrong. Read this instead.