“never plug extension cords into extension cords” is probably the most common piece of electrical related advice I’ve ever heard. But if you have, say, 2 x 2m long extension cords, and you plug one into the other, why is that considered a lot more unsafe than just using a single 4 or 5 meter cord?

Does it just boil down to that extra connection creating another opportunity for the prongs to slip out and cause a spark or short circuit? Or is there something else happening there?

For that matter - why aren’t super long extension cords (50 or more meters) considered unsafe? Does that also just come down to a matter of only having 2 connections versus 4 or more on a daisy chained cord?

Followup stupid question: is whatever causes piggybacked extension cords to be considered unsafe actually that dangerous, or is it the sort of thing that gets parroted around and misconstrued/blown out of proportion? On a scale from “smoking 20 packs of cigarettes a day” to “stubbing your toe on a really heavy piece of furniture”, how dangerous would you subjectively rate daisy chaining extension cords, assuming it was only 1 hop (2 extension cords, no more), and was kept under 5 or 10 metres?

I’m sure there’s probably somebody bashing their head against a wall at these questions, but I’m not trying to be ignorant, I’m just curious. Thank you for tolerating my stupid questions

  • gaiussabinus@lemmy.world
    link
    fedilink
    arrow-up
    32
    arrow-down
    8
    ·
    16 days ago

    This is incorrect. I need to increase gauge for voltage drop. Overloading the cable via length can only happen if I have a motor or other magnetic load at the end. A motor will try to draw it’s designed wattage regardless of voltage. A wire of a given ampacity will handle that many amps regardless of the length of the conductor. The relationship is power = voltage x current and voltage = current x resistance for single phase. The fire concern on extension cords tied together indoors is you have 100% strung that shit through a doorway or window, which is a code violation. You are going to pinch it and burn your shit down. all outdoor plugs are gfci these days and on site i can have 4 or 5 extension cords tied together. i only get 109 volts at the end but a heater is a resistive load. Doesnt matter for that application.

    • fine_sandy_bottom@lemmy.federate.cc
      link
      fedilink
      arrow-up
      21
      arrow-down
      2
      ·
      16 days ago

      It’s obvious you know more or less all there is to know about this topic. So much so that I suspect you have trouble explaining it to laypersons like me because it’s difficult for you to determine which parts of your knowledge are obvious common knowledge and which parts are specialist knowledge.

      • gazter@aussie.zone
        link
        fedilink
        arrow-up
        7
        ·
        16 days ago

        The super simple explanation is that the wires are too small. The water hose analogy breaks down fairly quickly, but I’ll try using it. Imagine a garden hose, with a regular nozzle on the end. But it’s not a perfect world, and our hose doesn’t transfer all the water that goes into it. Think of this as ten pinprick holes along every meter of hose. If we have ten meters of hose, that’s fine, we only need to turn on the tap a little bit to get a decent spray out of the nozzle, and a little bit will dribble out these holes. Now let’s join another hose on. We lose more water to leakage, so to get the same amount of water out of our nozzle, we have to turn on the tap more, giving it a bit more water flow. Now, our pinprick holes are not just dribbling, they’re flowing freely. Now let’s take it to the extreme- we join a thousand garden hoses together, all leaking a little bit. We have to turn the tap on A Lot More, and suddenly our pinpricks are spraying a serious amount of water everywhere. Now imagine we use a bigger hose. Let’s take it to the extreme again and say it’s a big stormwater pipe. But the key part here is that it has the same amount of holes, ten pinpricks per meter. This way, we can get heaps more water down that pipe, more than enough to give that water nozzle everything it wants. Also, because our pressure can remain low, those pinpricks are only leaking a little bit, not spraying everywhere. This is getting pretty wordy and unwieldy to type out on my phone, so I’ll try and bring it into the real world a bit more. An electrical load, like a motor (say a compressor in a fridge, a circular saw, etc) is like to our nozzle. It will pull more current (amps, or water flow) to maintain the same amount of power output (water coming out of the nozzle). As we get a longer conductor, the voltage drop (pressure reduction due to water lost to the pinpricks) gets larger, and our voltage at the end of a conductor gets lower. Power = voltage * current, so if that voltage is lower, to get the same power we need more current. More current means more heating. More heat in a small cable means melting. Physics has a way out for us, thankfully! The thicker a cable is, the less voltage drop it has, kind of like our stormwater pipe. So the voltage remains at a normal level at the motor, and consequently the motor draws a normal amount of current. This is why longer extensions are generally a lot thicker than shorter ones. If you’re interested in the math, let me know, it’s actually pretty fascinating, and ties into why long distance power lines are all super high voltage, among many other things. The basic equations are also not too hard to work with.

    • AgentOrangesicle@lemmy.world
      link
      fedilink
      arrow-up
      1
      ·
      edit-2
      16 days ago

      Do you mean inductive load rather than magnetic load? Or are all inductive loads attributed to electromagnets?

      Edit: also, don’t like… a lot of appliances create inductive loads?

      • gaiussabinus@lemmy.world
        link
        fedilink
        arrow-up
        4
        ·
        16 days ago

        Most inductive loads are motors. I used the term magnetic rather than inductive in the Hope of making my response less jargon filled and more intelligible. Very generally speaking inductance is the magnetic portion of the circuit or more technically it would the contribution to the circuit that causes the wave form to lag. That is specific to an AC circuit.